歡迎訪問(wèn)拔筆兔范文大全網(wǎng)!

高中數(shù)學(xué)水平考知識(shí)點(diǎn)歸納

天下 分享 時(shí)間: 加入收藏 我要投稿 點(diǎn)贊

在復(fù)習(xí)高中數(shù)學(xué)水平考時(shí),學(xué)生們應(yīng)該懂得怎樣去總結(jié)知識(shí)點(diǎn)。下面就是小編給大家?guī)?lái)的高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn),希望能幫助到大家!

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)1

1、圓的定義

平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

2、圓的方程

(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

(2)一般方程

當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。

(3)求圓方程的方法:

一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

3、直線與圓的位置關(guān)系

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設(shè)直線,圓,圓心到l的距離為,則有

(2)過(guò)圓外一點(diǎn)的切線:

①k不存在,驗(yàn)證是否成立

②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關(guān)系

通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

設(shè)圓

兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

當(dāng)時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;

當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。

注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)2

1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.

2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

①k=f/(x0)表示過(guò)曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

3.常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:①;②;③;

⑤;⑥;⑦;⑧。

4.導(dǎo)數(shù)的四則運(yùn)算法則:

5.導(dǎo)數(shù)的應(yīng)用:

(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

(2)求極值的步驟:

①求導(dǎo)數(shù);

②求方程的根;

③列表:檢驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;

(3)求可導(dǎo)函數(shù)值與最小值的步驟:

ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)3

集合有關(guān)概念

1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

2、集合的中元素的三個(gè)特性:

1.元素的確定性;

2.元素的互異性;

3.元素的無(wú)序性

說(shuō)明:

(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

(3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

注意啊:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

關(guān)于“屬于”的概念

集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。

描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

①語(yǔ)言描述法:例:{不是直角三角形的三角形}

②數(shù)學(xué)式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{_-3>2}

4、集合的分類(lèi):

1.有限集含有有限個(gè)元素的集合

2.無(wú)限集含有無(wú)限個(gè)元素的集合

3.空集不含任何元素的集合例:{_2=-5}

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)4

集合的分類(lèi)

(1)按元素屬性分類(lèi),如點(diǎn)集,數(shù)集。

(2)按元素的個(gè)數(shù)多少,分為有/無(wú)限集

關(guān)于集合的概念:

(1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對(duì)象就不能構(gòu)成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。

(2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

(3)無(wú)序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。

集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類(lèi):

含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。

非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_;

整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無(wú)理數(shù)。其中無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)的數(shù)。)

1.列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫(xiě)在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}.

有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。

例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。

例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

大括號(hào)內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫(xiě)出只有集合內(nèi)的元素x才具有的性質(zhì)。

一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱描述法。

例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)5

函數(shù)的表示方法

1.函數(shù)的三種表示方法列表法圖象法解析法

2.分段函數(shù):定義域的不同部分,有不同的對(duì)應(yīng)法則的函數(shù)。注意兩點(diǎn):①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù)。②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。

考點(diǎn)四、求定義域的幾種情況

①若f(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;

②若f(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;

③若f(x)是二次根式,則函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于0的實(shí)數(shù)集合;

④若f(x)是對(duì)數(shù)函數(shù),真數(shù)應(yīng)大于零。

⑤.因?yàn)榱愕牧愦蝺鐩](méi)有意義,所以底數(shù)和指數(shù)不能同時(shí)為零。

⑥若f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;

⑦若f(x)是由實(shí)際問(wèn)題抽象出來(lái)的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問(wèn)題

高中數(shù)學(xué)水平考知識(shí)點(diǎn)歸納相關(guān)文章:

1.

2.高中物理水平考知識(shí)點(diǎn)匯總

3.高中歷史水平考知識(shí)點(diǎn)總結(jié)

4.高二數(shù)學(xué)知識(shí)點(diǎn)精選總結(jié)【五篇】

5.人教版數(shù)學(xué)高一知識(shí)點(diǎn)匯總

6.高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

7.2020最全高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

8.人教版高一數(shù)學(xué)知識(shí)點(diǎn)整理五篇

9.高三數(shù)學(xué)必考知識(shí)點(diǎn)復(fù)習(xí)梳理5篇精選

10.2020高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納三篇

電商運(yùn)營(yíng) 周易 易經(jīng) 代理招生 二手車(chē) 網(wǎng)絡(luò)營(yíng)銷(xiāo) 旅游攻略 非物質(zhì)文化遺產(chǎn) 查字典 精雕圖 戲曲下載 抖音代運(yùn)營(yíng) 易學(xué)網(wǎng) 互聯(lián)網(wǎng)資訊 成語(yǔ) 詩(shī)詞 工商注冊(cè) 抖音帶貨 云南旅游網(wǎng) 網(wǎng)絡(luò)游戲 代理記賬 短視頻運(yùn)營(yíng) 在線題庫(kù) 國(guó)學(xué)網(wǎng) 抖音運(yùn)營(yíng) 雕龍客 雕塑 奇石 散文 常用文書(shū) 河北生活網(wǎng) 好書(shū)推薦 游戲攻略 心理測(cè)試 石家莊人才網(wǎng) 考研真題 漢語(yǔ)知識(shí) 心理咨詢 手游安卓版下載 興趣愛(ài)好 網(wǎng)絡(luò)知識(shí) 十大品牌排行榜 商標(biāo)交易 單機(jī)游戲下載 短視頻代運(yùn)營(yíng) 寶寶起名 范文網(wǎng) 電商設(shè)計(jì) 免費(fèi)發(fā)布信息 服裝服飾 律師咨詢 搜救犬 Chat GPT中文版 經(jīng)典范文 優(yōu)質(zhì)范文 工作總結(jié) 二手車(chē)估價(jià) 實(shí)用范文 石家莊點(diǎn)痣 養(yǎng)花 名酒回收 石家莊代理記賬 女士發(fā)型 搜搜作文 鋼琴入門(mén)指法教程 詞典 讀后感 玄機(jī)派 企業(yè)服務(wù) 法律咨詢 chatGPT國(guó)內(nèi)版 chatGPT官網(wǎng) 勵(lì)志名言 文玩 語(yǔ)料庫(kù) 游戲推薦 男士發(fā)型 高考作文 PS修圖 兒童文學(xué) 工作計(jì)劃 舟舟培訓(xùn) IT教程 手機(jī)游戲推薦排行榜 暖通,電地暖, 女性健康 苗木供應(yīng) ps素材庫(kù) 短視頻培訓(xùn) 優(yōu)秀個(gè)人博客 包裝網(wǎng) 創(chuàng)業(yè)賺錢(qián) 養(yǎng)生 民間借貸律師 綠色軟件 安卓手機(jī)游戲 手機(jī)軟件下載 手機(jī)游戲下載 單機(jī)游戲大全 石家莊論壇 網(wǎng)賺 職業(yè)培訓(xùn) 資格考試 成語(yǔ)大全 英語(yǔ)培訓(xùn) 藝術(shù)培訓(xùn) 少兒培訓(xùn) 苗木網(wǎng) 雕塑網(wǎng) 好玩的手機(jī)游戲推薦 漢語(yǔ)詞典 中國(guó)機(jī)械網(wǎng) 美文欣賞 紅樓夢(mèng) 道德經(jīng) 標(biāo)準(zhǔn)件 電地暖 鮮花 書(shū)包網(wǎng) 英語(yǔ)培訓(xùn)機(jī)構(gòu)
1418
領(lǐng)取福利

微信掃碼領(lǐng)取福利

微信掃碼分享

主站蜘蛛池模板: 午夜视频免费观看| 麻豆AV一区二区三区久久| 97精品在线播放| av无码国产在线看免费网站| 三年片在线观看免费观看大全中国| 久久国产免费观看精品3| 久激情内射婷内射蜜桃| 久久精品无码一区二区三区不卡| 亚洲午夜久久久精品电影院| 亚洲宅男精品一区在线观看| 亚洲欧美日韩国产综合五月天 | 色哟哟精品视频在线观看| 野花社区视频www| 触手怪入侵男生下面bl的漫画| 青娱乐免费视频观看| 野花日本免费观看高清电影8| 色综合综合在线| 精品无码人妻一区二区三区不卡 | 两个人看的www免费| 亚洲国产91在线| 蝌蚪蚪窝视频在线视频手机 | 毛片一级在线观看| 欧美激情xxxx性bbbb| 欧美jizzjizz在线播放| 最新国产精品亚洲| 日本三级在线观看中文字| 把极品白丝班长啪到腿软| 好紧好爽好深再快点av在线| 国产韩国精品一区二区三区 | 国产精品三级视频| 美女扒开内裤羞羞网站| 男女一边摸一边做爽爽毛片| 永久免费AV无码网站性色AV| 欧洲美熟女乱又伦免费视频| 日本三人交xxx69| 好吊妞国产欧美日韩免费观看| 国产高清不卡视频| 国产亚洲美女精品久久久久| 人人狠狠综合久久亚洲婷婷| 亚洲av高清一区二区三区 | 国语自产偷拍精品视频偷|